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Abstract
Introduction: Several previous studies have demonstrated that cancer chemotherapy 
is associated with brain injury and cognitive dysfunction. However, evidence suggests 
that cancer pathogenesis alone may play a role, even in non-CNS cancers.
Methods: Using a multimodal neuroimaging approach, we measured structural and 
functional connectome topology as well as functional network dynamics in newly di-
agnosed patients with breast cancer. Our study involved a novel, pretreatment assess-
ment that occurred prior to the initiation of any cancer therapies, including surgery 
with anesthesia. We enrolled 74 patients with breast cancer age 29–65 and 50 
frequency-matched healthy female controls who underwent anatomic and resting-
state functional MRI as well as cognitive testing.
Results: Compared to controls, patients with breast cancer demonstrated signifi-
cantly lower functional network dynamics (p = .046) and cognitive functioning 
(p < .02, corrected). The breast cancer group also showed subtle alterations in struc-
tural local clustering and functional local clustering (p < .05, uncorrected) as well as 
significantly increased correlation between structural global clustering and functional 
global clustering compared to controls (p = .03). This hyper-correlation between 
structural and functional topologies was significantly associated with cognitive dys-
function (p = .005).
Conclusions: Our findings could not be accounted for by psychological distress and 
suggest that non-CNS cancer may directly and/or indirectly affect the brain via mech-
anisms such as tumor-induced neurogenesis, inflammation, and/or vascular changes, 
for example. Our results also have broader implications concerning the importance of 
the balance between structural and functional connectome properties as a potential 
biomarker of general neurologic deficit.
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1  | INTRODUCTION

Cancer and/or its therapies appear to be associated with brain injury 
that results in cognitive impairment. Several cross-sectional and lon-
gitudinal studies have demonstrated abnormalities in brain structure 
and function, particularly in chemotherapy-treated patients and sur-
vivors (D’Agata et al., 2013; Deprez et al., 2014; Jung et al., 2016; 
Kesler & Blayney, 2015; Lepage et al., 2014; Nudelman et al., 2014; 
Simo et al., 2015; Stouten-Kemperman et al., 2014). However, many 
patients demonstrate differences in brain structure and function prior 
to chemotherapy suggesting that cancer pathogenesis, surgery/anes-
thesia, disease burden, host-related, and/or other factors may contrib-
ute to early brain changes (Cimprich et al., 2010; McDonald, Conroy, 
Ahles, West, & Saykin, 2012; Menning et al., 2015; Sato et al., 2015; 
Scherling, Collins, Mackenzie, Bielajew, & Smith, 2012; Scherling, 
Collins, Mackenzie, Lepage, et al., 2012).

Interestingly, while studies suggest that chronic effects of cancer 
and its treatments are characterized by lower brain functional activa-
tion (Kesler, Kent, & O’Hara, 2011; de Ruiter et al., 2011), evaluation 
of newly diagnosed patients consistently indicates hyper-activation 
(McDonald et al., 2012; Scherling, Collins, Mackenzie, Bielajew, & 
Smith, 2011). The reasons for this pattern are unclear but early hyper-
activation may represent disease-related brain injury that disrupts 
appropriate neural resource allocation and/or functional dynamics. 
Support for our hypothesis includes a postsurgery/prechemotherapy 
study of patients with breast cancer that demonstrated disrupted 
scale-free functional dynamics (Churchill et al., 2015). Additionally, 
we have previously noted a potential alteration in the relationship be-
tween structural and functional connectome properties in long-term 
survivors of breast cancer (Kesler, Watson, & Blayney, 2015) that may 
result in restricted flexibility of the functional network (Wirsich et al., 
2016). However, to date, no studies have evaluated the relationship 
between structural and functional connectomes in the same cohort of 
patients with breast cancer.

The connectome is a mathematical representation of the brain 
network comprised of regions (nodes) and connections (edges) be-
tween regions. This approach to evaluate brain connectivity relies 
on graph theory, which is the study of objects and their connections. 
Connectomes display a “small-world” organization wherein specialized 
groups or clusters of neurons are highly connected to each other while 
being economically connected to other clusters (Bassett and Bullmore, 
2006). Thus, connectome properties provide unique insights regarding 
both the integration and segregation of the brain network.

To date, pretreatment neuroimaging studies have involved a post-
surgery/prechemotherapy baseline. Given evidence that surgery and/
or anesthesia may be associated with cognitive and brain changes 
(Chen, Miaskowski, Liu, & Chen, 2012; Sato et al., 2015), the effects 
of cancer alone remain unclear. A recent study by Patel et al. (2015) 
demonstrated significantly reduced cognitive function in patients with 
breast cancer compared to healthy controls prior to initiation of any 
treatment, including surgery. These cognitive impairments were asso-
ciated with elevated pro-inflammatory cytokine levels. The effects of 
peripheral inflammation on cognition have been shown to be mediated 

by changes in the brain (Harrison, Doeller, Voon, Burgess, & Critchley, 
2014). Therefore, it is likely that disruptions of brain structure and/or 
function also exist at this early, pretreatment stage of breast cancer. 
These disruptions may parallel, at least in part, those noted following 
cancer treatments given that inflammation is a candidate mechanism 
underlying cancer pathogenesis as well as chemotherapy-related ef-
fects on the brain (Janelsins, Kesler, Ahles, & Morrow, 2014; Patel 
et al., 2015).

As part of our prospective, longitudinal study of cognition in breast 
cancer, we evaluated newly diagnosed patients prior to any treatment, 
including surgery with anesthesia. In this initial study, we aimed to 
compare brain structure and function, including functional dynamics, 
at our pretreatment baseline. We hypothesized that patients would 
demonstrate lower functional connectivity and dynamics compared 
to controls, based on the previous studies noted above that obtained 
postsurgery/prechemotherapy baselines. We also hypothesized that 
the relationship between structural and functional connectome to-
pologies would be altered in the breast cancer group compared to 
controls, based on our previous work in breast cancer survivors, as 
described above. We employed a multimodal neuroimaging approach 
including advanced methods that emphasize multivariate, brain net-
work connectivity.

2  | METHODS

2.1 | Participants

At the time of this study, we had enrolled 74 women aged 
29–65 years with newly diagnosed primary breast cancer who had 
completed their initial study visit prior to any treatment (surgery, 
chemotherapy, and breast radiation therapy). We also enrolled 50 
healthy female controls frequency matched for age, education, and 
menopausal status (Table 1). Patients with breast cancer were re-
cruited at the Stanford Cancer Institute. All consecutive patients 
who met study eligibility criteria were approached. Healthy controls 
were recruited via local media advertisements in northern California 
communities. There were 156 participants screened; 32 were ex-
cluded or declined to participate. Participants were excluded for 
psychiatric, neurologic, or comorbid medical conditions that are 
known to affect cognitive function as well as any major sensory defi-
cits (e.g., blindness). Participants were also required to be fluent in 
English sufficient for valid cognitive testing. The Stanford University 
Institutional Review Board approved this study, and all participants 
provided informed consent.

2.2 | Cognitive performance

Trained research staff administered the following neuropsycho-
logical tests to all participants: Comprehensive Trail Making Test 
(CTMT) (Moses, 2004), Controlled Oral Word Association (COWA) 
(Ruff, Light, Parker, & Levin, 1996), and the Rey Auditory Verbal 
Learning Test (RAVLT) (Schmidt, 2012). Participants were also admin-
istered domain-specific self-report measures, including the Clinical 
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Assessment of Depression (CAD) (Aghakhani & Chan, 2007), a meas-
ure of depression, anxiety, and fatigue, the Behavioral Rating Inventory 
of Executive Function for Adults (BRIEF) (Roth, Isquith, & Gioia, 
2005), and the Prospective and Retrospective Memory Questionnaire 
(PRMQ) (Crawford, Henry, Ward, & Blake, 2006; Crawford, Smith, 
Maylor, Della Sala, & Logie, 2003). Testing required approximately 
1 hr. Raw scores were used for RAVLT, while age-adjusted raw scores 
were used for COWA and T scores for CTMT, based on these tests’ 
normative data.

2.3 | Neuroimaging acquisition

Participants were included in this study even if they had MRI contrain-
dications; 65 of the 74 patients with breast cancer and all 50 of the 
controls underwent MRI. Neuroimaging data were acquired using a GE 
Discovery MR750 3.0 Tesla whole body scanner (GE Medical Systems) 
on the same day as the cognitive testing session. Resting-state func-
tional magnetic resonance imaging (rsfMRI) data were acquired while 
participants rested in the scanner with their eyes closed. We used 
a T2*-weighted gradient echo spiral pulse sequence (Glover & Law, 
2001) with the following parameters: relaxation time = 2,000 ms, echo 
time = 30 ms, flip angle = 89° and 1 interleave, field of view = 200, 
matrix = 64 × 64, in-plane resolution = 3.125. Number of volumes 
collected was 216, scan time = 7:12. An automated high-order shim-
ming method was used to reduce field inhomogeneity.

We also acquired a high-resolution, 3D inversion-recovery pre-
pared fast spoiled gradient echo T1-weighted anatomical MRI scan 
with the following parameters: TR = minimum, TE = minimum, flip = 11 
degrees, inversion time = 300 ms, bandwidth = ±31.25 kHz, field of 
view = 24 cm, phase field of view = 0.75, slice thickness = 1.5 mm, 
125 slices, 256 × 256 at 1 excitation, scan time = 4:26. Some par-
ticipants also underwent diffusion tensor imaging if time allowed 
(total scan time = 30 min or less). These data are not reported here. 
Neuroimaging data were visually inspected for quality prior to any 
preprocessing.

2.4 | Functional connectome construction

Functional connectivity preprocessing was performed using Statistical 
Parametric Mapping 8 (SPM8, RRID:SCR_007037) and CONN Toolbox 
(RRID:SCR_009550) as previously described (Kesler & Blayney, 2015; 
Kesler et al., 2013, 2014). Successful normalization was confirmed via 
visual inspection using the check registration function in SPM8 and 
in-house software that creates whole volume slice montages. Artifact 
correction included wavelet despiking (Patel et al., 2014). Correlation 
coefficients were calculated between rsfMRI time courses for each pair 
of 90 Automated Anatomical Labeling Atlas (AAL) (Tzourio-Mazoyer 
et al., 2002) regions of interest (ROIs) and then normalized using 
Fisher’s r-z transformation. Realignment motion parameters were 
included as covariates and images with excessive motion/signal arti-
fact were excluded. The resulting z-score connectivity matrices were 
thresholded to minimum connection density and then submitted to 
graph theoretical analysis using our Brain Networks Toolbox (https://
github.com/srkesler/bnets.git, RRID:SCR_014788) as well as Brain 
Connectivity Toolbox (Rubinov & Sporns, 2010) (RRID:SCR_004841) 
implemented in MATLAB v2014b. We focused on the clustering coef-
ficient considering our previous findings (Bruno, Hosseini, & Kesler, 
2012; Kesler, Gugel, Huston-Warren, & Watson, 2016; Kesler et al., 
2015). Clustering coefficient reflects the ratio of actual to possible 
connections between a node’s neighbors and is therefore a measure 
of network segregation (Rubinov & Sporns, 2010). We examined both 
global clustering (mean clustering coefficient across all nodes) as well 
as local clustering (nodal clustering).

2.5 | Functional network dynamics

We evaluated the temporal dynamics of the functional network by 
calculating the rescaled range Hurst exponent (Hurst, 1951) for all 
90 ROIs, corrected for small sample bias. The windowing function 
was based on a data-derived natural number that possessed the larg-
est number of divisors among all natural numbers in the time series 

TABLE  1 Demographic and medical variables

Breast cancer, N = 74 Healthy controls N = 50 F/Chi Sq. p

Age 49.8 (9.3) 49.7 (10.0) 0.057 .95

Age range 29–66 26–64

Education (years) 17.0 17.5 −1.083 .28

Minority status 33% 20% 2.46 .117

Postmenopausal 45% 40% 0.328 .567

Disease stage at diagnosis (0, I, II, III) 6%, 35%, 47%, 11%

Days since diagnosis 38 (26)

Estrogen receptor positive 89%

Progesterone receptor positive 75%

Estrogen/progesterone receptor positive 75%

HER2 positive 24%

BRCA (BRCA1 positive, BRCA2 positive) 9%, 9%

HER2, human epidermal growth factor receptor 2; BRCA, breast cancer susceptibility.

https://github.com/srkesler/bnets.git
https://github.com/srkesler/bnets.git
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interval. The Hurst exponent quantifies how correlated a time series is 
with itself, or how well it reflects elements of the baseline signal from 
both the recent and remote past. This autocorrelative property is re-
ferred to as “long memory” (Churchill et al., 2015; Ciuciu, Varoquaux, 
Abry, Sadaghiani, & Kleinschmidt, 2012; He, 2011).

2.6 | Structural connectome construction

Gray matter maps were obtained using voxel-based morphometry 
(VBM). Images were first manually reoriented to the anterior and 
posterior commissures then realigned, segmented into tissue com-
partments, spatially normalized to a template using diffeomorphic 
anatomical registration through exponentiated lie algebra (DARTEL), 
and modulated and smoothed (12 mm full width, half maximum ker-
nel) using the VBM8 Toolbox within SPM8 (Kurth, Gaser, & Luders, 
2015). Successful normalization was confirmed via visual inspection 
using the check registration function in SPM8 and whole volume slice 
montages as well as with the check sample homogeneity function in 
VBM8 Toolbox.

Gray matter covariance networks were constructed for each pa-
tient using an innovative similarity-based extraction method (Tijms, 
Series, Willshaw, & Lawrie, 2012). Network nodes were defined by 
3 × 3 × 3 voxel cubes spanning the entire gray matter volume (mean 
network size = 8,525 ± 49 nodes). Each node therefore contained 27 
gray matter volume values and a correlation matrix was calculated 
across all pairs of nodes taking into account the sum over the product 
of the differences between the cubes’ values at each voxel location 
as well as the cubes’ average values (Tijms et al., 2012). The correla-
tion matrices were thresholded to minimum connection density and 

evaluated using graph theoretical analysis as described above. For 
local analysis, nodes were assigned one of the 90 AAL labels based on 
the node’s voxel coordinates. Nodal clustering was calculated for each 
node as the average clustering coefficient across all nodes with the 
same AAL label as previously described (Tijms et al., 2012).

2.7 | Statistical analyses

Between-group differences in cognitive test scores and clustering co-
efficients were calculated using the general linear model, covarying for 
minority status and CAD score. Structural clustering was additionally 
covaried for structural connectome size (i.e., number of nodes) given 
that this varied between individuals. Local clustering and cognitive 
test score models were corrected for false discovery rate (FDR). Hurst 
long memory was not normally distributed and was therefore evalu-
ated using Wilcoxon rank test for both global and local effects (with 
FDR correction for local effects).

Within both groups separately, the relationships among func-
tional clustering and structural clustering and Hurst long memory 
were explored using two-tailed correlations. Differences in correla-
tions between the groups were evaluated using two-tailed Fisher 
r-to-z transformation. To examine the effect of the relationship 
between structural clustering and functional clustering on cogni-
tive performance, we conducted a principle component analysis 
(PCA) on structural and functional clustering coefficients across all 
participants.

Within the breast cancer group, exploratory, two-tailed cor-
relations were performed to examine the relationships among ed-
ucation level, age, disease stage, days since diagnosis, brain metrics, 

Breast cancer 
(N = 74)

Healthy controls 
(N = 50) F/Chi Sq. p

p (FDR 
corrected)

RAVLT total 
recall

52.5 (8.6) 56.1 (7.6) 7.64 .01 .02

RAVLT 
interference

5.82 (1.8) 6.76 (1.8) 8.21 .01 .02

RAVLT delayed 
recall

10.9 (2.7) 11.6 (2.2) 3.07 .08 .12

CTMT 1 50.7 (7.3) 55.5 (9.7) 9.16 .003 .02

CTMT 2 52.7 (10.6) 54.2 (10.4) 0.45 .50 .56

CTMT 3 50.1 (8.2) 50.1 (10.1) 0.01 .91 .91

CTMT 4 54.8 (10.1) 56.5 (10.1) 0.46 .50 .56

CTMT 5 50.6 (8.8) 54.0 (9.5) 4.35 .04 .07

COWA 42.5 (13.0) 49.5 (12.8) 7.44 .01 .02

BRIEF GECa 51.3 (9.2) 45.3 (9.8) 0.74 .39

PRMQa 36.7 (8.8) 32.8 (8.2) 0.89 .35

CADa 52.0 (9.8) 43.7 (9.6) 22.8 <.0001

RAVLT, Rey Auditory Verbal Learning Test; CTMT, Comprehensive Trail Making Test; COWA, 
Controlled Oral Word Association; BRIEF GEC, Behavioral Rating Inventory of Executive Function 
Global Executive Composite; PRMQ, Prospective and Retrospective Memory Questionnaire; CAD, 
clinical assessment of depression; FDR, false discovery rate.
aHigher scores on the BRIEF, PRMQ, CAD = elevated symptoms. Higher scores on all other mea-
sures = better performance.

TABLE  2 Cognitive and self-report 
measures
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and cognition. Exploratory, two-tailed t-  or rank tests were calcu-
lated to determine whether menopausal status or tumor pathology 
contributed to neurobiologic status and/or cognitive performance. 
Tumor pathology included hormone receptor (estrogen/progester-
one), human epidermal growth factor receptor 2, and breast can-
cer susceptibility status obtained from the patient’s medical record. 
Only the brain metrics and cognitive tests that were significantly 
different between groups were examined. To reduce the number 
of comparisons, a composite of the significant cognitive test scores 
was computed using the Mahalanobis distance, which was then log 
transformed (Mahalanobis, 1936; Menning et al., 2015; Stouten-
Kemperman et al., 2015).

All statistical analyses were conducted in the R statistical package 
(R Foundation, RRID:SCR_001905).

3  | RESULTS

3.1 | Cognitive performance

The breast cancer group demonstrated lower scores on all cogni-
tive tests except for CTMT trial 3. Of the 10 cognitive measures, the 
RAVLT total recall and interference trials, CTMT trial 1 and COWA 
scores were significant and survived FDR correction (Table 2). CAD 
was not a significant covariate in these models (p > .19), but minority 
status was for RAVLT interference and COWA (p < .04).

3.2 | Self-ratings

The breast cancer group showed elevated psychological distress as 
measured by the CAD compared to controls (p < .0001, Table 2). 
Minority status was nonsignificant in the model (p = .99). There were 
no significant differences in subjective executive or memory func-
tion (Table 2). CAD was a very significant covariate in these models 
(p < .0001), but minority status was not (p > .87).

3.3 | Functional network clustering coefficient

No significant difference was observed between the groups in global 
clustering (p = .19, Table 3). However, the breast cancer group showed 
significantly altered local clustering in several frontal and parietal re-
gions, but these did not survive FDR correction (Figure 1). Minority 
status and CAD were nonsignificant covariates (p > .51).

3.4 | Structural network clustering coefficient

No significant group difference was found in global clustering (p = .61, 
Table 3). Again, local clustering was significantly altered in frontal and 
parietal as well as temporal regions in the breast cancer group but not 
after FDR correction (Figure 1). Minority status and CAD were not 
significant covariates (p > .53).

3.5 | Functional network dynamics

The breast cancer group demonstrated significantly lower Hurst long 
memory compared to controls (p = .046, Table 3). This primarily involved 
distributed, right lateralized regions (Figure 1). Hurst long memory was 
not correlated with CAD or minority status in either group (p > .33).

3.6 | Brain structure and function relationships

Structural clustering and functional clustering as well as functional clus-
tering and Hurst long memory were significantly associated, although 
only in the breast cancer group (Figure 2). Specifically, structural clus-
tering and functional clustering were inversely correlated (r = −0.33, 
p = .01) and structural clustering was directly correlated with Hurst long 
memory (r = 0.26, p = .050). The difference in correlation between the 
groups was significant for structural clustering and functional clustering 
(z = 2.21, p = .03) but not for structural clustering and Hurst long mem-
ory (z = 1.4, p = .16). We examined only the first PCA component, which 
accounted for 59% of the variance. This component weighted functional 
clustering negatively and structural clustering positively. Component 
scores were not correlated with CAD or minority status (p > .31).

3.7 | Brain and cognition

In the breast cancer group, Mahalanobis distance was significantly corre-
lated with PCA component scores (Figure 3, r = 0.34, p = .005) and mod-
erately associated with Hurst long memory (r = −0.21, p = .09). Higher 
Mahalanobis distance indicates higher deviance of cognitive scores from 
the control group and therefore greater cognitive dysfunction.

3.8 | Disease, demographics, brain, and cognition

There were no differences in Hurst long memory, PCA component 
or Mahalanobis distance related to disease stage, tumor pathology, 

Breast cancer 
(N = 65)

Healthy controls 
(N = 50) F p

Functional connectome global 
clustering coefficient

0.54 (0.03) 0.53 (0.03) 1.78 .19

Structural connectome global clustering 
coefficient

0.69 (0.005) 0.70 (0.005) 0.26 .61

Structural connectome size 8,521 (48) 8,531 (49) 0.01 .92

Functional network dynamics (Hurst 
exponent)

0.19 (0.10) 0.22 (0.11) 1,271 .046

TABLE  3 Brain network metrics



6 of 10  |     KESLER et al.

or menopausal status. There were also no significant correlational ef-
fects of demographic variables or days since diagnosis on brain or 
cognition.

F IGURE  1 Local differences in brain 
network metrics. Compared to controls, 
patients with breast cancer showed 
altered functional clustering (FC, cyan) in 
right inferior parietal lobe, right middle 
inferior orbital frontal gyrus, and right 
medial superior frontal gyrus (p < .05, 
uncorrected). The breast cancer group 
showed altered structural clustering (SC, 
blue) in right inferior and middle frontal 
gyri, bilateral postcentral gyri, right 
precuneus, and left inferior temporal 
gyrus (p < .05, uncorrected). Functional 
dynamics as measured by Hurst exponent 
(FD, magenta) was lower in patients with 
breast cancer compared to controls in 
right inferior orbital gyrus, left middle 
occipital gyrus, right parietal lobule, right 
cuneus, right superior temporal gyrus, 
and right inferior temporal gyrus (p < .05, 
uncorrected)

F IGURE  2 Correlations between brain network metrics. The 
breast cancer group demonstrated a significant negative correlation 
between structural and functional clustering as well as a significant 
positive correlation between functional clustering and Hurst 
exponent. Values are shown as r(p). SC, structural connectome 
clustering; FC, functional connectome clustering; FD, functional 
dynamics (Hurst exponent). *The group difference between these 
correlations was significant (p = .03)

F IGURE  3 Relationship of structural and functional principal 
component and cognitive function in patients with breast cancer. 
Greater cognitive dysfunction was associated with greater overlap 
between structural and functional connectome clustering (r = 0.34, 
p = .005). MHD, Mahalanobis distance; higher MHD = greater 
cognitive dysfunction
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4  | DISCUSSION

Our study replicates findings reported by Patel et al. (2015) in that 
we observed cognitive impairment in newly diagnosed patients with 
breast cancer at a pretreatment evaluation. Unlike most previous 
studies, patients enrolled in this study had yet to undergo any cancer 
treatment, including any surgery with general anesthesia. Importantly, 
our study provides novel information by demonstrating neural bio-
markers of cognitive dysfunction associated with breast cancer.

Using a multimodal, multivariate approach, we examined the to-
pology of both structural and functional connectomes as well as the 
temporal dynamics of the functional network. We demonstrated that 
functional dynamics were significantly lower in patients with breast 
cancer compared to controls. This method is based on the theory that 
the brain resides in a state of “criticality” allowing it to adapt quickly to 
new situations. A critical state system is characterized by spatial and 
temporal correlations that show long memory, which theoretically rep-
resents the brain network’s ability to keep relevant information readily 
available, allowing it to respond dynamically (Ciuciu et al., 2012; He, 
2011).

Our findings indicate that the adaptability of functional networks is 
disrupted even prior to initiation of cancer treatments, including surgery. 
Conversely, Churchill et al. (2015) observed higher Hurst exponent in 
patients with breast cancer compared to healthy controls (postsurgery/
prechemotherapy). They also noted relationships between Hurst long 
memory and psychological distress, which we did not. However, their 
study involved a task-fMRI paradigm, whereas ours involved resting-
state fMRI. Hurst exponent is highest during resting state and tends 
to decrease with increased task load (He, 2011; He, Zempel, Snyder, 
& Raichle, 2010). Therefore, the Churchill et al. findings may suggest 
a deficit in task-modulated suppression of long memory. This would 
be consistent with other studies demonstrating reduced task-related 
functional deactivation in patients with breast cancer (Cimprich et al., 
2010; Kesler, Bennett, Mahaffey, & Spiegel, 2009).

We have previously observed altered structural and functional 
clustered connectivity in our cross-sectional studies of chemotherapy-
treated, long-term breast cancer survivors (Bruno et al., 2012; 
Hosseini, Koovakkattu, & Kesler, 2012; Kesler et al., 2015). In the 
present study, we demonstrated only very subtle disruption of local 
clustered connectivity in pretreatment patients. Taken together, these 
findings suggest that this injury may begin quite early in the disease 
course but is more affected chronically and/or by adjuvant treatments. 
Regional clustering and Hurst exponent results indicate a widespread 
effect, consistent with previous studies (Deprez et al., 2012; Kesler 
et al., 2015). Frontal, parietal, and temporal areas were altered in the 
breast cancer group compared to controls, consistent with deficits in 
memory, executive function, and verbal fluency. It will be important 
to evaluate how these regional effects change in patients after adju-
vant treatments. It should also be noted that regional differences did 
not survive correction for multiple comparisons and may therefore be 
spurious.

These potential alterations in clustered connectivity involved both 
functional and structural networks. Unlike most previous studies of 

gray matter structural covariance networks, the similarity-based ex-
traction method we applied resulted in individual level networks that 
allowed us to examine correlations with functional connectomes. Gray 
matter structural covariance networks are believed to reflect underly-
ing axonal connections as well as common genetic, neurotrophic, and 
neuroplastic processes (Alexander-Bloch, Giedd, & Bullmore, 2013; 
Mechelli, Friston, Frackowiak, & Price, 2005). Our group and others 
have previously demonstrated, in healthy adults, that structural co-
variance networks are consistent with intrinsic functional networks 
with respect to connectivity pattern, although not in all brain regions 
(Damoiseaux & Greicius, 2009; Hosseini & Kesler, 2013).

Additionally, the topologies of structural and functional networks, 
as measured by connectome properties such as clustering coefficient, 
tend to be uncorrelated (Caeyenberghs, Leemans, Leunissen, Michiels, 
& Swinnen, 2013; Hosseini & Kesler, 2013). Consistently, in the pres-
ent study, we found no significant relationship between structural 
and functional clustering coefficients in healthy controls. Additionally, 
there was little overlap between functional and structural regional 
clustering differences between the groups (Figure 1). The meaning of 
this lack of correlation in healthy individuals is currently unclear but 
may indicate the presence of indirect functional connections, func-
tional gating, and/or interregional distance (Deco & Corbetta, 2011; 
Honey et al., 2009; Stam et al., 2016).

Unlike controls, the breast cancer group showed a significant in-
verse relationship between structural clustering and functional clus-
tering. In our previous studies of breast cancer survivors, we have 
noted a similar pattern in terms of group differences wherein structural 
connectome clustering was elevated in one study while functional 
connectome clustering was reduced compared to controls in a sep-
arate study (Bruno et al., 2012; Kesler et al., 2015). This may suggest 
a disease-related disruption in the balance between structural and 
functional connectome organizations. The brain involves many oppos-
ing demands that might be represented by anticorrelated processes. 
However, the brain is organized to reconcile these demands (Rubinov 
& Sporns, 2010; Sporns & Honey, 2006), and therefore, hyper-inverse 
correlation seems to suggest a disruption in the brain network’s ability 
to balance competing systems. Accordingly, our principal component 
analysis inversely weighted structural clustering and functional clus-
tering and these component scores were significantly correlated with 
cognitive dysfunction.

A review of connectome studies in Alzheimer’s disease also sug-
gests inverse relationships between structural and functional con-
nectome topologies across single-modality studies (Dai et al., 2015). 
Additionally, an effect of inverse structural and functional connectome 
relationship on behavioral phenotype was observed in a previous mul-
timodal study of individuals with pervasive developmental disorder 
(Rudie et al., 2012). Additionally, hyper-correlation of structural and 
functional connectome properties has been associated with temporal 
lobe epilepsy (Wirsich et al., 2016). Therefore, enhanced structure–
function correlation seems likely to be a general effect of neurologic 
disorder rather than a cancer-specific one.

One possible interpretation of our results is that increased struc-
tural clustering results in decreased flexibility of functional networks. 
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This interpretation is supported by our finding that lower structural 
clustering was associated with lower functional adaptability (Hurst 
long memory). Additionally, lower Hurst long memory was moderately, 
though nonsignificantly correlated with greater cognitive dysfunction 
in patients with breast cancer. Brain structure is believed to constrain 
brain function (Deco & Corbetta, 2011) and an optimal balance be-
tween brain network stability and flexibility is required for learning 
(Hermundstad, Brown, Bassett, & Carlson, 2011a, 2011b).

Given the nature of correlation, the alternative interpretation that 
increased functional clustering decreases structural clustering is also 
possible. The functional hyper-activation noted in postsurgery/preche-
motherapy studies of patients with breast cancer may reflect abnormal, 
excitotoxic neural activity as observed in other neurologic syndromes 
(Palop & Mucke, 2010). We have previously demonstrated that che-
motherapy upregulates neural activity and increases synaptic death 
in cultured neurons (Manchon et al., 2016). Perhaps these processes 
are also associated with aspects of cancer pathogenesis. Specifically, 
breast cancer tumors initiate neurogenesis and release nerve growth 
factor (Cole, Nagaraja, Lutgendorf, Green, & Sood, 2015; Pundavela 
et al., 2015; Zhao et al., 2014), which may result in aberrant CNS activ-
ity via peripheral innervation. Tumor aggressiveness has been associ-
ated with tumor-related neurogenesis (Zhao et al., 2014). However, we 
were unable to detect any effects of disease severity or tumor pathol-
ogy on brain connectivity or cognitive function. This may have been 
due to the imbalance in our sample with respect to disease stage and 
tumor markers, and therefore, further investigation is required.

As noted above, Patel et al. (2015) observed correlations between 
elevated cytokine levels and cognitive dysfunction in patients with 
breast cancer presurgery. Malignant tumors and their inflammatory re-
sponse are also characterized by angiogenesis (Farnsworth, Lackmann, 
Achen, & Stacker, 2014; Folkman, 1971). A preliminary study by Ng 
et al. (2013) indicated elevated plasma vascular endothelial growth 
factor (VEGF), a common angiogenic factor, in patients with breast 
cancer following chemotherapy treatment, that was negatively cor-
related with cognition. VEGF is expressed in the brain and is believed 
to play an important role in neurodegeneration. However, the study 
did not evaluate baseline, pretreatment VEGF levels. Long-term breast 
cancer survivors also have increased incidence of cerebral small vessel 
disease following cancer therapies (Koppelmans et al., 2015), but it is 
currently unknown if these vascular effects exist prior to treatment ini-
tiation. The potential role of these factors in cancer-related cognitive 
impairment requires further investigation.

Stress is also associated with disrupted functional dynamics in pa-
tients with breast cancer, inflammatory response, and tumor progres-
sion (Churchill et al., 2015; Cole et al., 2015). Psychological distress, as 
measured by CAD, was significantly higher in the breast cancer group 
compared to controls, but was not a significant contributor to group dif-
ferences in cognitive performance and was not correlated with Hurst 
long memory or structure–function component. Mean CAD score in 
the breast cancer group was in the clinically defined “normal range” 
for this measure (Aghakhani & Chan, 2007). Therefore, psychological 
distress may not have been sufficiently elevated to have a detectable 
impact on brain function. These findings provide further evidence that 

cognitive impairment in patients with breast cancer cannot be entirely 
explained by distress. We also noted that distress contributes primarily 
to self-reported rather than objective cognitive function, consistent 
with previous studies (Wefel, Kesler, Noll, & Schagen, 2015).

In summary, prior to initiation of any treatments, including surgery 
with anesthesia, patients with newly diagnosed breast cancer showed 
disruption of intrinsic functional network dynamics and altered rela-
tionship between structural and functional connectome clustering. Our 
results provide important new insights regarding the effects of non-
CNS cancer on brain network organization with broader implications 
concerning the significance of the relationship between structural and 
functional connectome properties as a potential biomarker of neurologic 
deficit. This study, in combination with the previous literature in this area, 
suggests that these effects may represent a cumulative injury to the 
brain, beginning with cancer pathogenesis and then increasing in severity 
across subsequent cancer treatments. Further research is needed to ad-
dress the limitations of this study including replication of structural con-
nectomes using fiber tractography and targeted recruitment of patients 
to balance samples in terms of tumor pathology and disease severity.
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